Generalized Sparselet Models for Real-Time Multiclass Object Recognition

The problem of real-time multiclass object recognition is of great practical importance in object recognition. In this paper, we describe a framework that simultaneously utilizes shared representation, reconstruction sparsity, and parallelism to enable real-time multiclass object detection with defo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-05, Vol.37 (5), p.1001-1012
Hauptverfasser: Hyun Oh Song, Girshick, Ross, Zickler, Stefan, Geyer, Christopher, Felzenszwalb, Pedro, Darrell, Trevor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of real-time multiclass object recognition is of great practical importance in object recognition. In this paper, we describe a framework that simultaneously utilizes shared representation, reconstruction sparsity, and parallelism to enable real-time multiclass object detection with deformable part models at 5Hz on a laptop computer with almost no decrease in task performance. Our framework is trained in the standard structured output prediction formulation and is generically applicable for speeding up object recognition systems where the computational bottleneck is in multiclass, multi-convolutional inference. We experimentally demonstrate the efficiency and task performance of our method on PASCAL VOC, subset of ImageNet, Caltech101 and Caltech256 dataset.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2014.2353631