Single-Pedestrian Detection Aided by Two-Pedestrian Detection

In this paper, we address the challenging problem of detecting pedestrians who appear in groups. A new approach is proposed for single-pedestrian detection aided by two-pedestrian detection. A mixture model of two-pedestrian detectors is designed to capture the unique visual cues which are formed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-09, Vol.37 (9), p.1875-1889
Hauptverfasser: Ouyang, Wanli, Zeng, Xingyu, Wang, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we address the challenging problem of detecting pedestrians who appear in groups. A new approach is proposed for single-pedestrian detection aided by two-pedestrian detection. A mixture model of two-pedestrian detectors is designed to capture the unique visual cues which are formed by nearby pedestrians but cannot be captured by single-pedestrian detectors. A probabilistic framework is proposed to model the relationship between the configurations estimated by single- and two-pedestrian detectors, and to refine the single-pedestrian detection result using two-pedestrian detection. The two-pedestrian detector can integrate with any single-pedestrian detector. Twenty-five state-of-the-art single-pedestrian detection approaches are combined with the two-pedestrian detector on three widely used public datasets: Caltech, TUD-Brussels, and ETH. Experimental results show that our framework improves all these approaches. The average improvement is 9 percent on the Caltech-Test dataset, 11 percent on the TUD-Brussels dataset and 17 percent on the ETH dataset in terms of average miss rate. The lowest average miss rate is reduced from 37 to percent on the Caltech-Test dataset, from 55 to 50 percent on the TUD-Brussels dataset and from 43 to 38 percent on the ETH dataset.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2014.2377734