ELECTROCHEMISTRY. High-performance transition metal-doped Pt₃Ni octahedra for oxygen reduction reaction
Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-06, Vol.348 (6240), p.1230 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M-Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo-Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm(2) and mass activity of 6.98 A/mg(Pt), which are 81- and 73-fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm(2) and 0.096 A/mg(Pt)). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst. |
---|---|
ISSN: | 1095-9203 |
DOI: | 10.1126/science.aaa8765 |