Low-Temperature Conformal Atomic Layer Deposition of SiNx Films Using Si₂Cl₆ and NH₃ Plasma

A plasma-enhanced atomic layer deposition (ALD) process was developed for the growth of SiNx thin films using Si2Cl6 and NH3 plasma. At substrate temperatures ≤400 °C, we show that this ALD process leads to films with >95% conformality over high aspect ratio nanostructures with a growth per cycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-05, Vol.7 (20), p.10806
Hauptverfasser: Ovanesyan, Rafaiel A, Hausmann, Dennis M, Agarwal, Sumit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A plasma-enhanced atomic layer deposition (ALD) process was developed for the growth of SiNx thin films using Si2Cl6 and NH3 plasma. At substrate temperatures ≤400 °C, we show that this ALD process leads to films with >95% conformality over high aspect ratio nanostructures with a growth per cycle of ∼1.2 Å. The film growth mechanism was studied using in situ attenuated total reflection Fourier transform infrared spectroscopy. Our data show that on the SiNx growth surface, Si2Cl6 reacts with surface -NH2 groups to form surface -NH species, which are incorporated into the growing film. In the subsequent half cycle, radicals generated in the NH3 plasma abstract surface Cl atoms, and restore an NHx (x = 1,2)-terminated surface. Surface Si-N-Si bonds are also primarily formed during the NH3 plasma half-cycle. The infrared data and Rutherford backscattering combined with hydrogen forward scattering shows that the films contain ∼23% H atoms primarily incorporated as -NH groups.
ISSN:1944-8252
DOI:10.1021/acsami.5b01531