Structured Sparse Priors for Image Classification
Model-based compressive sensing (CS) exploits the structure inherent in sparse signals for the design of better signal recovery algorithms. This information about structure is often captured in the form of a prior on the sparse coefficients, with the Laplacian being the most common such choice (lead...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2015-06, Vol.24 (6), p.1763-1776 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model-based compressive sensing (CS) exploits the structure inherent in sparse signals for the design of better signal recovery algorithms. This information about structure is often captured in the form of a prior on the sparse coefficients, with the Laplacian being the most common such choice (leading to l 1 -norm minimization). Recent work has exploited the discriminative capability of sparse representations for image classification by employing class-specific dictionaries in the CS framework. Our contribution is a logical extension of these ideas into structured sparsity for classification. We introduce the notion of discriminative class-specific priors in conjunction with class specific dictionaries, specifically the spike-and-slab prior widely applied in Bayesian sparse regression. Significantly, the proposed framework takes the burden off the demand for abundant training image samples necessary for the success of sparsity-based classification schemes. We demonstrate this practical benefit of our approach in important applications, such as face recognition and object categorization. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2015.2409572 |