Crystallization and fusion behaviors, observed by adiabatic calorimetry, of benzene confined in silica mesopores with uniform diameters

Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2015-03, Vol.27 (10), p.105101-105101
Hauptverfasser: Nagoe, Atsushi, Oguni, Masaharu, Fujimori, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of benzene confined within pores of CPG glasses. It was confirmed, from the observed spontaneous heat-release or -absorption effects, that there exists a non-crystallizing amorphous component of confined benzene, as reported previously. The pore-diameter dependence of fusion enthalpy observed was inconsistent with the previously proposed model which suggested that the non-crystallizing amorphous component is located on the pore wall in the form of a shell-like structure of a few nm in thickness. A very slow relaxation process corresponding to a translational-diffusion motion of molecule was observed, indicating that the benzene fills the pores incompletely along the pore channel. In addition, we found that the fusion enthalpy as a function of inverse pore-diameter dependence decreases steeply in the range of 60-10 nm in diameter while gradually in the range around 5 nm.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/27/10/105101