Crystallization and fusion behaviors, observed by adiabatic calorimetry, of benzene confined in silica mesopores with uniform diameters
Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of be...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2015-03, Vol.27 (10), p.105101-105101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heat capacities and spontaneous enthalpy-relaxation effects of the benzene confined in silica MCM-41 and SBA-15 pores with uniform diameters were measured by high-precision adiabatic calorimetry. The fusion temperatures and fusion enthalpies determined were compared with the literature results of benzene confined within pores of CPG glasses. It was confirmed, from the observed spontaneous heat-release or -absorption effects, that there exists a non-crystallizing amorphous component of confined benzene, as reported previously. The pore-diameter dependence of fusion enthalpy observed was inconsistent with the previously proposed model which suggested that the non-crystallizing amorphous component is located on the pore wall in the form of a shell-like structure of a few nm in thickness. A very slow relaxation process corresponding to a translational-diffusion motion of molecule was observed, indicating that the benzene fills the pores incompletely along the pore channel. In addition, we found that the fusion enthalpy as a function of inverse pore-diameter dependence decreases steeply in the range of 60-10 nm in diameter while gradually in the range around 5 nm. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/27/10/105101 |