Disease Tropism of c-erbB: Effects of Carboxyl-Terminal Tyrosine and Internal Mutations on Tissue-Specific Transformation

Avian leukosis virus induces erythroleukemia in chickens by proviral insertional mutation of the protooncogene c-erbB. The product of the insertionally activated c-erbB locus lacks the extracellular ligand-binding domain and is strictly leukemogenic. It has previously been demonstrated that the dise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-09, Vol.86 (18), p.7164-7168
Hauptverfasser: Pelley, Robert J., Maihle, Nita J., Boerkoel, Cornelius, Shu, Hui-Kuo, Carter, Thomas H., Moscovici, Carlo, Kung, Hsing-Jien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Avian leukosis virus induces erythroleukemia in chickens by proviral insertional mutation of the protooncogene c-erbB. The product of the insertionally activated c-erbB locus lacks the extracellular ligand-binding domain and is strictly leukemogenic. It has previously been demonstrated that the disease spectrum associated with aberrant c-erbB expression can be expanded by structural perturbation of the cytoplasmic domain of this protein. In this report, we use mutagenesis and retroviral vectors to identify specific mutations in the carboxyl-terminal domain of the insertionally activated c-erbB product that are sufficient to activate the sarcomagenic potential of this protein. Interestingly, a point mutation in the kinase domain appears to be sufficient for sarcomagenic activation. However, removal of the terminal tyrosine residue of the c-erbB product, implicated in modulating kinase activity, does not lead to a fully transforming phenotype. These studies suggest that there are multiple ways to activate the fibroblast-transforming potential of the insertionally activated c-erbB product. The conformation of this protein may play a more significant role in oncogenic activation than the phosphorylation status of the putative carboxylterminal autophosphorylation site.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.86.18.7164