Facile Water-based Spray Pyrolysis of Earth-Abundant Cu2FeSnS4 Thin Films as an Efficient Counter Electrode in Dye-Sensitized Solar Cells

A novel approach to produce earth-abundant Cu2FeSnS4 (CFTS) thin film using spray pyrolysis of nontoxic aqueous precursors followed by sulfurization is reported. The CFTS phase formation was confirmed by both Raman spectroscopy and X-ray diffraction techniques. Hall measurements of these films revea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-10, Vol.6 (20), p.17661-17667
Hauptverfasser: Prabhakar, Rajiv Ramanujam, Huu Loc, Nguyen, Kumar, Mulmudi Hemant, Boix, Pablo P, Juan, Sun, John, Rohit Abraham, Batabyal, Sudip K, Wong, Lydia Helena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel approach to produce earth-abundant Cu2FeSnS4 (CFTS) thin film using spray pyrolysis of nontoxic aqueous precursors followed by sulfurization is reported. The CFTS phase formation was confirmed by both Raman spectroscopy and X-ray diffraction techniques. Hall measurements of these films reveal p-type conductivity with good charge carrier density and mobilities appropriate for solar harvesting devices. To the best of our knowledge, this is the first report on the electrical properties of solution-processed Cu2FeSnS4 thin films estimated using Hall measurements. Dye-sensitized solar cells (DSSC) fabricated with CFTS thin film as a photocathode in iodine/iodide electrolyte exhibit good power conversion efficiency, 8.03%, indicating that CFTS would be a promising cheaper alternative to replace Pt as a counter electrode in DSSCs.
ISSN:1944-8244
1944-8252
DOI:10.1021/am503888v