Large-scale high-quality 2D silica crystals: dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis

High-quality colloidal crystals (CCs) are important for use in photonic research and as templates for large-scale plasmonic SERS substrates. We investigated how variations in temperature, colloid concentration, and dip-drawing parameters (rate, incubation time, etc) affect the structure of 2D CCs fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2014-10, Vol.25 (40), p.405602
Hauptverfasser: Khanadeev, Vitaly, Khlebtsov, Boris N, Klimova, Svetlana A, Tsvetkov, Mikhail Yu, Bagratashvili, Victor N, Sukhorukov, Gleb B, Khlebtsov, Nikolai G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-quality colloidal crystals (CCs) are important for use in photonic research and as templates for large-scale plasmonic SERS substrates. We investigated how variations in temperature, colloid concentration, and dip-drawing parameters (rate, incubation time, etc) affect the structure of 2D CCs formed by highly monodisperse silica nanoparticles (SiNPs) synthesized in an l-arginine solution and regrown by a modified Stöber method. The best quality 2D CCs were obtained with aqueous 12 wt% colloids at a temperature of 25 °C, an incubation time of 1 min, and a drawing rate of 50 mm min−1. Assembling of gold nanorods (GNRs) on 2D CCs resulted in the formation of ring-like chains with a preferential tail-to-tail orientation along the hexagonal boundaries. To the best of our knowledge, this is the first time that such nanostructures have been prepared. Owing to the preferential tail-to-tail packing of GNRs, 2D SiNP CC + GNR substrates demonstrated an analytical SERS enhancement of about 8000, which was 10 to 15 times higher than that for self-assembled GNRs on a silicon wafer. In addition, the analytical SERS enhancement was almost 60 times lower after replacing the nanorods in 2D SiNP CC + GNR substrates with 25 nm gold nanospheres.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/25/40/405602