Perspectives on Massive Coral Growth Rates in a Changing Ocean

The tropical ocean environment is changing at an unprecedented rate, with warming and severe tropical cyclones creating obvious impacts to coral reefs within the last few decades and projections of acidification raising concerns for the future of these iconic and economically important ecosystems. D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Biological bulletin (Lancaster) 2014-06, Vol.226 (3), p.187-202
Hauptverfasser: LOUGH, JANICE M., CANTIN, NEAL E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tropical ocean environment is changing at an unprecedented rate, with warming and severe tropical cyclones creating obvious impacts to coral reefs within the last few decades and projections of acidification raising concerns for the future of these iconic and economically important ecosystems. Documenting variability and detecting change in global and regional climate relies upon high-quality observational records of climate variables supplemented, prior to the mid-19th century, with reconstructions from various sources of proxy climate information. Here we review how annual density banding patterns that are recorded in the skeletons of massive reef-building corals have been used to document environmental change and impacts within coral reefs. Massive corals provide a historical perspective of continuous calcification processes that pre-date most ecological observations of coral reefs. High-density stress bands, abrupt declines in annual linear extension, and evidence of partial mortality within the skeletal growth record reveal signatures of catastrophic stress events that have recently been attributed to mass bleaching events caused by unprecedented thermal stress. Comparison of recent trends in annual calcification with century-scale baseline calcification rates reveals that the frequency of growth anomalies has increased since the late 1990s throughout most of the world's coral reef ecosystems. Continuous coral growth histories provide valuable retrospective information on the coral response to environmental change and the consequences of anthropogenic climate change. Co-ordinated efforts to synthesize and combine global calcification histories will greatly enhance our understanding of current calcification responses to a changing ocean.
ISSN:0006-3185
1939-8697
DOI:10.1086/BBLv226n3p187