Development of eye drops containing antihypertensive drugs: formulation of aqueous irbesartan/γCD eye drops

Aqueous nanoparticulated eye drop formulations based on γ-cyclodextrin (γCD) complexes were developed and tested in vitro. Three antihypertensive drugs, i.e. enalapril maleate, irbesartan and verapamil HCl, that have been shown to possess IOP-lowering activity were selected for this study. All three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical development and technology 2015-01, Vol.20 (5), p.626-632
Hauptverfasser: Jansook, Phatsawee, Muankaew, Chutimon, Stefánsson, Einar, Loftsson, Thorsteinn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aqueous nanoparticulated eye drop formulations based on γ-cyclodextrin (γCD) complexes were developed and tested in vitro. Three antihypertensive drugs, i.e. enalapril maleate, irbesartan and verapamil HCl, that have been shown to possess IOP-lowering activity were selected for this study. All three drugs displayed B s -type phase-solubility diagrams in aqueous γCD solutions and had relatively low affinity for γCD. Irbesartan was selected for further formulation development. The drug was relatively stable at pH 4.5 but somewhat less stable at physiologic pH. However, presence of γCD in the aqueous media enhanced the chemical stability of irbesartan. Aqueous γCD-based eye drop formulations containing 1% and 2% (w/v) irbesartan were prepared and the effect of pH on the particles size distribution and drug release investigated. Only ∼2% of the drug was in solution in the pH 4.5 formulations but up to 45% in the pH 7 formulations. The pH 7 formulations, where larger fraction of the drug was in solution, displayed somewhat greater drug permeation flux but much lower drug permeation coefficients than the pH 4.5 formulations. Dynamic light scattering studies indicated the faster permeation was due to formation of smaller particles in presence tyloxapol.
ISSN:1083-7450
1097-9867
DOI:10.3109/10837450.2014.910811