Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using ¹⁸F-fluoromisonidazole positron emission tomographic imaging
Hypoxia is an important microenvironmental factor influencing atherosclerosis progression by inducing foam-cell formation, metabolic adaptation of infiltrated macrophages, and plaque neovascularization. Therefore, imaging plaque hypoxia could serve as a marker of lesions at risk. Advanced aortic ath...
Gespeichert in:
Veröffentlicht in: | Circulation. Cardiovascular imaging 2014-03, Vol.7 (2), p.312 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypoxia is an important microenvironmental factor influencing atherosclerosis progression by inducing foam-cell formation, metabolic adaptation of infiltrated macrophages, and plaque neovascularization. Therefore, imaging plaque hypoxia could serve as a marker of lesions at risk.
Advanced aortic atherosclerosis was induced in 18 rabbits by atherogenic diet and double balloon endothelial denudation. Animals underwent (18)F-fluoromisonidazole positron emission tomographic and (18)F-fluorodeoxyglucose positron emission tomographic imaging after 6 to 8 months (atherosclerosis induction) and 12 to 16 months (progression) of diet initiation. Four rabbits fed standard chow served as controls. Radiotracer uptake of the abdominal aorta was measured using standardized uptake values. After imaging, plaque hypoxia (pimonidazole), macrophages (RAM-11), neovessels (CD31), and hypoxia-inducible factor-1α were assessed by immunohistochemistry.(18)F-fluoromisonidazole uptake increased with time on diet (standardized uptake value mean, 0.10±0.01 in nonatherosclerotic animals versus 0.20±0.03 [P=0.002] at induction and 0.25±0.03 [P |
---|---|
ISSN: | 1942-0080 |
DOI: | 10.1161/CIRCIMAGING.113.001084 |