Predation on Pollinators Promotes Coevolutionary Divergence in Plant-Pollinator Mutualisms

Coevolution of plants and pollinators has been suggested as a mechanism driving diversification of plant-pollinator mutualisms. There is increasing recognition that predators or competitors can influence the abundance and behavior of pollinators and indirectly affect the fitness of plants. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2014-02, Vol.183 (2), p.229-242
Hauptverfasser: Kagawa, Kotaro, Takimoto, Gaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coevolution of plants and pollinators has been suggested as a mechanism driving diversification of plant-pollinator mutualisms. There is increasing recognition that predators or competitors can influence the abundance and behavior of pollinators and indirectly affect the fitness of plants. However, existing theories on plant-pollinator diversification focus exclusively on mutualistic interactions between plants and pollinators. Here we used simulations to evaluate whether predation on pollinators promotes coevolutionary diversification of plant-pollinator mutualisms. We developed an individual-based simulation model in which the blooming season of plants and the active seasons of pollinators and predators can evolve. In simulations without predators, plant-pollinator coevolution caused diversification in blooming/active seasons for both plants and pollinators, but this diversification resulted in polymorphisms, not speciation. The introduction of predators promoted a split of plant and pollinator populations into reproductively isolated subpopulations with corresponding blooming and active seasons or a directional shift of blooming and active seasons, increasing the possibility of plant-pollinator cospeciation. This result suggests that predation on pollinators can promote sympatric and allopatric divergence of plant-pollinator mutualisms. Joint action of antagonistic and mutualistic interactions may be fundamentally important for diversification in coevolutionary interactions.
ISSN:0003-0147
1537-5323
DOI:10.1086/674442