Galactosylated manganese ferrite nanoparticles for targeted MR imaging of asialoglycoprotein receptor

Cancer cells can express specific biomarkers, such as cell membrane proteins and signaling factors. Thus, finding biomarkers and delivering diagnostic agents are important in the diagnosis of cancer. In this study, we investigated a biomarker imaging agent for the diagnosis of hepatic cancers. The a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2013-11, Vol.24 (47), p.475103-475103
Hauptverfasser: Yang, Seung-Hyun, Heo, Dan, Lee, Eugene, Kim, Eunjung, Lim, Eun-Kyung, Lee, Young Han, Haam, Seungjoo, Suh, Jin-Suck, Huh, Yong-Min, Yang, Jaemoon, Park, Sahng Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer cells can express specific biomarkers, such as cell membrane proteins and signaling factors. Thus, finding biomarkers and delivering diagnostic agents are important in the diagnosis of cancer. In this study, we investigated a biomarker imaging agent for the diagnosis of hepatic cancers. The asialoglycoprotein receptor (ASGPr) was selected as a biomarker for hepatoma cells and the ASGPr-targetable imaging agent bearing a galactosyl group was prepared using manganese ferrite nanoparticles (MFNP) and galactosylgluconic acid. The utility of the ASGPr-targetable imaging agent, galactosylated MFNP (G-MFNP) was assessed by several methods in ASGPr-expressing HepG2 cells as target cells and ASGPr-deficient MCF7 cells. Physical and chemical properties of G-MFNP were examined using Fourier-transform infrared spectroscopy, dynamic light scattering, zeta potential analysis, and transmission electron microscopy. No significant cytotoxicity was observed in either cell line. Targeting ability was assessed using flow cytometry, magnetic resonance imaging, inductively coupled plasma atomic emission spectroscopy, absorbance analysis, dark-field microscopy, Prussian blue staining, and transmission electron microscopy. We demonstrated that G-MFNP target successfully and bind to ASGPr-expressing HepG2 cells specifically. We suggest that these results will be useful in strategies for cancer diagnoses based on magnetic resonance imaging.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/24/47/475103