An efficient pulse compression method of chirp-coded excitation in medical ultrasound imaging

Coded excitation can improve the SNR in medical ultrasound imaging. In coded excitation, pulse compression is applied to compress the elongated coded signals into a short pulse, which typically requires high computational complexity, i.e., a compression filter with a few hundred coefficients. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-10, Vol.60 (10), p.2225-2229
Hauptverfasser: Yoon, Changhan, Lee, Wooyoul, Chang, Jin, Song, Tai-kyong, Yoo, Yangmo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coded excitation can improve the SNR in medical ultrasound imaging. In coded excitation, pulse compression is applied to compress the elongated coded signals into a short pulse, which typically requires high computational complexity, i.e., a compression filter with a few hundred coefficients. In this paper, we propose an efficient pulse compression method of chirp-coded excitation, in which the pulse compression is conducted with complex baseband data after downsampling, to lower the computational complexity. In the proposed method, although compression is conducted with the complex data, the L-fold downsampling is applied for reducing both data rates and the number of compression filter coefficients; thus, total computational complexity is reduced to the order of 1/L 2 . The proposed method was evaluated with simulation and phantom experiments. From the simulation and experiment results, the proposed pulse compression method produced similar axial resolution compared with the conventional pulse compression method with negligible errors, i.e., >36 dB in signal-to-error ratio (SER). These results indicate that the proposed method can maintain the performance of pulse compression of chirp-coded excitation while substantially reducing computational complexity.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2013.2815