Phase diagram and annealing effect for Fe1+δTe1−xSx single crystals

The excess Fe atoms which unavoidably exist in the Fe(Te, Se, S) crystal lattice result in a complicated antiferromagnetic ground state as well as the suppression of superconductivity. As a result, there are still discrepancies on their phase diagrams. In this paper, we report the synthesis of Fe1+δ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2013-09, Vol.25 (38), p.385701-385701
Hauptverfasser: Dong, Chiheng, Wang, Hangdong, Mao, Qianhui, Khan, Rajwali, Zhou, Xi, Li, Chenxia, Yang, Jinghu, Chen, Bin, Fang, Minghu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The excess Fe atoms which unavoidably exist in the Fe(Te, Se, S) crystal lattice result in a complicated antiferromagnetic ground state as well as the suppression of superconductivity. As a result, there are still discrepancies on their phase diagrams. In this paper, we report the synthesis of Fe1+δTe1−xSx (0 ≤ x ≤ 0.12) single crystals by a melting method. Superconductivity was greatly improved after air annealing by which we partially removed the excess Fe atoms. Based on the resistivity and susceptibility measurements, we concluded a phase diagram of the Fe1+δTe1−xSx (0 ≤ x ≤ 0.12) system with fewer excess iron atoms. We found a coexisting region (0.07 ≤ x ≤ 0.11) of antiferromagnetic order and bulk superconductivity. This phase diagram is similar to that of the K- or Co-doped BaFe2As2 system, as well as the Fe(Te, Se) system, implying a commonality of the iron-based superconductors.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/25/38/385701