Multi-View Video Representation Based on Fast Monte Carlo Surface Reconstruction
This paper provides an alternative solution to the costly representation of multi-view video data, which can be used for both rendering and scene analyses. Initially, a new efficient Monte Carlo discrete surface reconstruction method for foreground objects with static background is presented, which...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2013-09, Vol.22 (9), p.3342-3352 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper provides an alternative solution to the costly representation of multi-view video data, which can be used for both rendering and scene analyses. Initially, a new efficient Monte Carlo discrete surface reconstruction method for foreground objects with static background is presented, which outperforms volumetric techniques and is suitable for GPU environments. Some extensions are also presented, which allow a speeding up of the reconstruction by exploiting multi-resolution and temporal correlations. Then, a fast meshing algorithm is applied, which allows interpolating a continuous surface from the discrete reconstructed points. As shown by the experimental results, the original video frames can be approximated with high accuracy by projecting the reconstructed foreground objects onto the original viewpoints. Furthermore, the reconstructed scene can be easily projected onto any desired virtual viewpoint, thus simplifying the design of free-viewpoint video applications. In our experimental results, we show that our techniques for reconstruction and meshing compare favorably with the state-of-the-art, and we also introduce a rule-of-thumb for effective application of the method with a good quality versus representation cost trade-off. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2013.2264818 |