Programming nanostructured soft biological surfaces by atomic layer deposition

Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2013-06, Vol.24 (24), p.245701-245701
Hauptverfasser: Szilágyi, Imre Miklós, Teucher, Georg, Härkönen, Emma, Färm, Elina, Hatanpää, Timo, Nikitin, Timur, Khriachtchev, Leonid, Räsänen, Markku, Ritala, Mikko, Leskelä, Markku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman, TG-DTA, XRR, water contact angle and photocatalysis measurements. While we could preserve the superhydrophobic feature of lotus, we managed to add a new property, i.e. photocatalytic activity. We also explored how surface passivation treatments and various ALD precursors affect the stability of the sensitive soft biological tissues. As we were able to gradually change the number of nanopatterns of lotus, we gained new insight into how the hollow organic nanotubes on the surface of lotus influence its superhydrophobic feature.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/24/24/245701