A four-pixel matched collimator for high-sensitivity SPECT imaging
We propose a wide aperture parallel-hole collimator that we call a 4-pixel matched collimator (4-PMC) for high-sensitivity SPECT imaging. The hole size of the 4-PMC is matched to four detector pixels; that is, there are four (2 × 2) pixels per collimator hole. By contrast, a 1-pixel matched collimat...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2013-04, Vol.58 (7), p.2199-2217 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a wide aperture parallel-hole collimator that we call a 4-pixel matched collimator (4-PMC) for high-sensitivity SPECT imaging. The hole size of the 4-PMC is matched to four detector pixels; that is, there are four (2 × 2) pixels per collimator hole. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. We evaluated four types of collimator (high-resolution collimator versions and high-sensitivity collimator versions of both 4-PMC and 1-PMC) by simulation. SPECT images of a cylindrical phantom with cold spots in the noise-free condition demonstrated that the 4-PMC provided a higher-contrast image than the 1-PMC for the same collimator version. In addition, SPECT images at the noise level corresponding to a human cerebral blood flow study suggested that the high-sensitivity version of the 4-PMC provided the highest contrast image among the four collimator types. In conclusion, the high-sensitivity SPECT system using the 4-PMC can improve the trade-off between spatial resolution and sensitivity and will consequently provide improved image contrast for clinical studies of the human brain compared with the SPECT system using the 1-PMC. |
---|---|
ISSN: | 0031-9155 1361-6560 |
DOI: | 10.1088/0031-9155/58/7/2199 |