Involvement of large-conductance Ca(2+) -activated K(+) channels in both nitric oxide and endothelium-derived hyperpolarization-type relaxation in human penile small arteries
Large-conductance Ca(2+) -activated K(+) channels (BKC a ), located on the vascular smooth muscle, play an important role in regulation of vascular tone. In penile corpus cavernosum tissue, opening of BKC a channels leads to relaxation of corporal smooth muscle, which is essential during erection; h...
Gespeichert in:
Veröffentlicht in: | Basic & clinical pharmacology & toxicology 2013-07, Vol.113 (1), p.19 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Large-conductance Ca(2+) -activated K(+) channels (BKC a ), located on the vascular smooth muscle, play an important role in regulation of vascular tone. In penile corpus cavernosum tissue, opening of BKC a channels leads to relaxation of corporal smooth muscle, which is essential during erection; however, there is little information on the role of BKC a channels located in penile vascular smooth muscle. This study was designed to investigate the involvement of BKC a channels in endothelium-dependent and endothelium-independent relaxation of human intracavernous penile arteries. In human intracavernous arteries obtained in connection with transsexual operations, change in isometric force was recorded in microvascular myographs, and endothelium-dependent [nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type] and endothelium-independent (NO-donor) relaxations were measured in contracted arteries. In penile small arteries contracted with phenylephrine, acetylcholine evoked NO- and EDH-type relaxations, which were sensitive to iberiotoxin (IbTX), a selective blocker of BKC a channels. Iberiotoxin also inhibited relaxations induced by a NO-donor, sodium nitroprusside. NS11021, a selective opener of BKC a channels, evoked pronounced relaxations that were inhibited in the presence of IbTX. NS13558, a BKC a -inactive analogue of NS11021, failed to relax human penile small arteries. Our results show that BKC a channels are involved in both NO- and EDH-type relaxation of intracavernous penile arteries obtained from healthy men. The effect of a selective opener of BKC a channels also suggests that direct activation of the channel may be an advantageous approach for treatment of impaired endothelium-dependent relaxation often associated with erectile dysfunction. |
---|---|
ISSN: | 1742-7843 |
DOI: | 10.1111/bcpt.12059 |