Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6
Recently colossal volume thermal expansion has been observed in the framework compounds Ag3Co(CN)6 and Ag3Fe(CN)6. We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2012-12, Vol.24 (50), p.505404-505404 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently colossal volume thermal expansion has been observed in the framework compounds Ag3Co(CN)6 and Ag3Fe(CN)6. We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/24/50/505404 |