E2F-1 lacking the transcriptional activity domain induces autophagy
The transcription factor E2F-1 plays a crucial role in the control of cell proliferation. E2F-1 has tumor suppressive properties by inducing apoptosis and autophagy. In this study, E2F-1 and its truncated form (E2Ftr), lacking the transactivation domain (TAD), were compared for their ability to indu...
Gespeichert in:
Veröffentlicht in: | Cancer biology & therapy 2012-09, Vol.13 (11), p.1091-1101 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transcription factor E2F-1 plays a crucial role in the control of cell proliferation. E2F-1 has tumor suppressive properties by inducing apoptosis and autophagy. In this study, E2F-1 and its truncated form (E2Ftr), lacking the transactivation domain (TAD), were compared for their ability to induce autophagy. In Gaussia luciferase-based assays, both E2F-1 and E2Ftr induced the proteolytic cleavage of the autophagic marker LC3. In addition, LC3 and autophagy protein 5 (Atg5) were upregulated by E2F-1 and E2Ftr. Likewise, both E2F proteins induced a punctate pattern of GFP-tagged LC3, indicating autophagosome formation. The presence of double-membrane autophagic vesicles induced by E2F-1 and E2Ftr was confirmed by transmission electron microscopy (TEM). The application of z-VAD-fmk, a caspase inhibitor, partially blocked both E2F-1 and E2Ftr-mediated cytotoxicity. Moreover, Atg5
−/−
cells were more resistant to the E2F-1 or E2Ftr-induced cell killing effect than Atg5 wt cells. The TAD of E2F-1 is not essential for induction of autophagy; apoptosis and autophagy cooperate for an efficient cancer cell killing effect induced by E2F-1 or E2Ftr. E2Ftr-induced autophagy is a promising approach to destroy tumors that are resistant to conventional treatments. |
---|---|
ISSN: | 1538-4047 1555-8576 |
DOI: | 10.4161/cbt.21143 |