Large mutational target size for rapid emergence of bacterial persistence
Phenotypic heterogeneity displayed by a clonal bacterial population permits a small fraction of cells to survive prolonged exposure to antibiotics. Although first described over 60 y ago, the molecular mechanisms underlying this behavior, termed persistence, remain largely unknown. To systematically...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (31), p.12740-12745 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phenotypic heterogeneity displayed by a clonal bacterial population permits a small fraction of cells to survive prolonged exposure to antibiotics. Although first described over 60 y ago, the molecular mechanisms underlying this behavior, termed persistence, remain largely unknown. To systematically explore the genetic basis of persistence, we selected a library of transposon-mutagenized Escherichia coli cells for survival to multiple rounds of lethal ampicillin exposure. Application of microarray-based genetic footprinting revealed a large number of loci that drastically elevate persistence frequency through null mutations and domain disruptions. In one case, the C-terminal disruption of methionyl-tRNA synthetase (MetG) results in a 10,000-fold higher persistence frequency than wild type. We discovered a mechanism by which null mutations in transketolase A (tktA) and glycerol-3-phosphate (G3P) dehydrogenase (glpD) increase persistence through metabolic flux alterations that increase intracellular levels of the growth-inhibitory metabolite methylglyoxal. Systematic double-mutant analyses revealed the genetic network context in which such persistent mutants function. Our findings reveal a large mutational target size for increasing persistence frequency, which has fundamental implications for the emergence of antibiotic tolerance in the clinical setting. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1205124109 |