Development and evaluation of carvedilol-loaded transdermal drug delivery system: In-vitro and in-vivo characterization study

Context: The transdermal drug delivery system was prepared and the bioavailability of the selected drug was enhanced by reducing first-pass metabolism. Objective: The objective of this study was to enhance the bioavailability of carvedilol through transdermal patches. Materials and methods: To devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development and industrial pharmacy 2012-12, Vol.38 (12), p.1530-1537
Hauptverfasser: Kshirsagar, Sanjay J., Bhalekar, Mangesh R., Mohapatra, Santosh K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context: The transdermal drug delivery system was prepared and the bioavailability of the selected drug was enhanced by reducing first-pass metabolism. Objective: The objective of this study was to enhance the bioavailability of carvedilol through transdermal patches. Materials and methods: To develop a matrix-type transdermal patch containing carvedilol with different ratios of polymer combinations by solvent evaporation technique. Results and discussion: In-vitro permeation studies were performed by Franz diffusion cells. The results followed Higuchi kinetics, and mechanism of release was diffusion mediated. On the basis of the in-vitro and physicochemical parameters of carvedilol patches, the code F-1(PVP: Ethyl Cellulose = 4:1) was chosen for the study of in-vivo, ex-vivo, histocompatibility study, and pharmacological study. The bioavailability studies in rats indicated that the carvedilol-loaded transdermal patches provided steady-state plasma concentration and improved bioavailability of 72% in comparison to oral administration. The ex-vivo permeation study in rat's skin indicated that the flux and permeability co-efficient of optimized F-1 patch was 30.08 ± 0.7 μg/cm2/h and 0.416 ± 0.05 μg/cm2/h, respectively, which was more as compared to plain carvedilol. The histocompatibility study of the F-1 patch on the rat's skin after 24 h ex-vivo study gave less pathological changes as compared to other. The antihypertensive activity of the patch in comparison with oral administration was studied using N-nitro-L-arginine methyl ester-induced hypertensive rats. It was observed that the optimized patch (F-1) significantly controlled hypertension (p 
ISSN:0363-9045
1520-5762
DOI:10.3109/03639045.2012.656271