Pharmacokinetics of Lamivudine and Lamivudine-Triphosphate after Administration of 300 Milligrams and 150 Milligrams Once Daily to Healthy Volunteers: Results of the ENCORE 2 Study

There is interest in evaluating the efficacy of lower doses of certain antiretrovirals for clinical care. We determined here the bioequivalence of plasma lamivudine (3TC) and intracellular 3TC-triphosphate (3TC-TP) concentrations after the administration of two different doses. ENCORE 2 was a random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antimicrobial Agents and Chemotherapy 2012-03, Vol.56 (3), p.1427-1433
Hauptverfasser: Else, Laura J, Jackson, Akil, Puls, Rebekah, Hill, Andrew, Fahey, Paul, Lin, Enmoore, Amara, Alieu, Siccardi, Marco, Watson, Victoria, Tjia, John, Emery, Sean, Khoo, Saye, Back, David J, Boffito, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is interest in evaluating the efficacy of lower doses of certain antiretrovirals for clinical care. We determined here the bioequivalence of plasma lamivudine (3TC) and intracellular 3TC-triphosphate (3TC-TP) concentrations after the administration of two different doses. ENCORE 2 was a randomized crossover study. Subjects received 3TC at 300 and 150 mg once daily for 10 days (arm 1; n = 13) or vice versa (arm 2; n = 11), separated by a 10-day washout. Pharmacokinetic (PK) profiles (0 to 24 h) were assessed on days 10 and 30. Plasma 3TC and 3TC-TP levels in peripheral blood mononuclear cells were quantified by high-performance liquid chromatography-tandem mass spectrometry. Within-subject changes in PK parameters (the area under the concentration-time curve from 0 to 24 h [AUC0-24], the trough concentration of drug in plasma at 24 h [C24], and the maximum concentration of drug in plasma [Cmax]) were evaluated by determining the geometric mean ratios (GMRs) adjusted for study arm, period, and intra-individual variation. Regimens were considered bioequivalent if the 90% confidence interval (90% CI) fell within the range of 0.8 to 1.25. A total of 24 subjects completed the study. The GM (90% CI) 3TC AUC0-24), expressed as ng·h/ml, for the 300- and 150-mg doses were 8,354 (7,609 to 9,172) and 4,773 (4,408 to 5,169), respectively. Bioequivalence in 3TC PK following the administration of 300 and 150 mg was not demonstrated: the GMRs for AUC0-24, C24, and Cmax were 0.57 (0.55 to 0.60), 0.63 (0.59 to 0.67), and 0.56 (0.53 to 0.60), respectively. The GM (90% CI) 3TC-TP AUC0-24 values (pmol·h/106 cells) for the 300- and 150-mg doses were 59.5 (51.8 to 68.3) and 44.0 (38.0 to 51.0), respectively. Bioequivalence in 3TC-TP PK following the administration of 300 and 150 mg was not demonstrated: the GMRs for AUC0-24, C24, and Cmax were 0.73 (0.64 to 0.83), 0.82 (0.68 to 0.99), and 0.70 (0.61 to 0.82), respectively. We found that 3TC at 150 mg is not bioequivalent to the standard regimen of 300 mg, indicating that saturation of cytosine phosphorylation pathways is not achieved at a dose of 150 mg.
ISSN:0066-4804
1098-6596
DOI:10.1128/AAC.05599-11