Improvement in Cardiac Function following Transplantation of Human Umbilical Cord Matrix-Derived Mesenchymal Cells
Objectives: Human umbilical cord mesenchymal cells (hUCM) can be easily obtained and processed in a laboratory. These cells may be considered as a suitable source in the repair of heart failure diseases. We, therefore, examined whether these cells may contribute to heart regeneration following an ac...
Gespeichert in:
Veröffentlicht in: | Cardiology 2011-01, Vol.120 (1), p.9-18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives: Human umbilical cord mesenchymal cells (hUCM) can be easily obtained and processed in a laboratory. These cells may be considered as a suitable source in the repair of heart failure diseases. We, therefore, examined whether these cells may contribute to heart regeneration following an acute experimental myocardial infarction (MI). Methods: MI-induced animals received 5 × 10 6 hUCM cells, 5 × 10 6 5-azacytidine-treated cells (dhUCM), or PBS alone, subepicardially. A group of animals with MI and no other former intervention served as controls. dhUCM cells were assessed for F-actin, myogenin and troponin-I expression. Results: dhUCM cells appeared as binucleated cells with extensive cytoplasmic processes. These differentiated cells were F-actin and myogenin positive. Thirty days after LAD ligation, left ventricular ejection fraction and the percentage of fractional shortening improved significantly in cell-receiving animals. In addition, the amount of scar tissue was significantly reduced in hUCM and dhUCM groups compared to MI group (p < 0.05). These parameters were comparable between hUCM and dhUCM groups. Histopathological evaluations revealed that some engrafted cells adjacent to and remote from the MI area expressed troponin-I, F-actin and connexin43. Conclusion: These findings demonstrated the potential therapeutic use of either differentiated or undifferentiated hUCM cells in treatment of heart failure conditions. |
---|---|
ISSN: | 0008-6312 1421-9751 |
DOI: | 10.1159/000332581 |