Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments
Quantitative analysis of Ca2+ fluctuations in the endoplasmic/sarcoplasmic reticulum (ER/SR) is essential to defining the mechanisms of Ca2+-dependent signaling under physiological and pathological conditions. Here, we developed a unique class of genetically encoded indicators by designing a Ca2+ bi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (39), p.16265-16270 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantitative analysis of Ca2+ fluctuations in the endoplasmic/sarcoplasmic reticulum (ER/SR) is essential to defining the mechanisms of Ca2+-dependent signaling under physiological and pathological conditions. Here, we developed a unique class of genetically encoded indicators by designing a Ca2+ binding site in the EGFP. One of them, calcium sensor for detecting high concentration in the ER, exhibits unprecedented Ca2+ release kinetics with an off-rate estimated at around 700 s–1 and appropriate Ca2+ binding affinity, likely attributable to local Ca2+-induced conformational changes around the designed Ca2+ binding site and reduced chemical exchange between two chromophore states. Calcium sensor for detecting high concentration in the ER reported considerable differences in ER Ca2+ dynamics and concentration among human epithelial carcinoma cells (HeLa), human embryonic kidney 293 cells (HEK-293), and mouse myoblast cells (C2C12), enabling us to monitor SR luminal Ca2+ in flexor digitorum brevis muscle fibers to determine the mechanism of diminished SR Ca2+ release in aging mice. This sensor will be invaluable in examining pathogenesis characterized by alterations in Ca2+ homeostasis. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1103015108 |