An efficient method for recombineering GAL4 and QF drivers

Neural circuit mapping and manipulation are facilitated by independent control of gene expression in pre- and post-synaptic neurons. The GAL4/UAS and Q binary transcription systems have the potential to provide this capability. Of particular use in neural circuit mapping would be GAL4 and QF drivers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fly (Austin, Tex.) Tex.), 2011-10, Vol.5 (4), p.371-378
1. Verfasser: Stowers, R. Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural circuit mapping and manipulation are facilitated by independent control of gene expression in pre- and post-synaptic neurons. The GAL4/UAS and Q binary transcription systems have the potential to provide this capability. Of particular use in neural circuit mapping would be GAL4 and QF drivers specific for neurotransmitters and neurotransmitter receptors. Recently available Drosophila genomic BAC libraries make recombineering large genes including those specific for neurotransmitters and neurotransmitter receptors feasible. Here the functionality of cassettes that allow efficient recombineering of GAL4 and QF drivers based on kanamycin selection is demonstrated in Drosophila. The cassettes should, however, be generalizable for recombineering in other species.
ISSN:1933-6934
1933-6942
DOI:10.4161/fly.5.4.17560