Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by β(1)-integrins
The hypothesis tested by these studies states that in addition to interendothelial cell tight junction proteins, matrix adhesion by β(1)-integrin receptors expressed by endothelial cells have an important role in maintaining the cerebral microvessel permeability barrier. Primary brain endothelial ce...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2011-10, Vol.31 (10), p.1972 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hypothesis tested by these studies states that in addition to interendothelial cell tight junction proteins, matrix adhesion by β(1)-integrin receptors expressed by endothelial cells have an important role in maintaining the cerebral microvessel permeability barrier. Primary brain endothelial cells from C57 BL/6 mice were incubated with β(1)-integrin function-blocking antibody (Ha2/5) or isotype control and the impacts on claudin-5 expression and microvessel permeability were quantified. Both flow cytometry and immunofluorescence studies demonstrated that the interendothelial claudin-5 expression by confluent endothelial cells was significantly decreased in a time-dependent manner by Ha2/5 exposure relative to isotype. Furthermore, to assess the barrier properties, transendothelial electrical resistance and permeability measurements of the monolayer, and stereotaxic injection into the striatum of mice were performed. Ha2/5 incubation reduced the resistance of endothelial cell monolayers significantly, and significantly increased permeability to 40 and 150 kDa dextrans. Ha2/5 injection into mouse striatum produced significantly greater IgG extravasation than the isotype or the control injections. This study demonstrates that blockade of β(1)-integrin function changes interendothelial claudin-5 expression and increases microvessel permeability. Hence, endothelial cell-matrix interactions via β(1)-integrin directly affect interendothelial cell tight junction claudin-5 expression and brain microvascular permeability. |
---|---|
ISSN: | 1559-7016 |
DOI: | 10.1038/jcbfm.2011.99 |