Signal design using nonlinear oscillators and evolutionary algorithms: Application to phase-locked loop disruption
This work describes an approach for efficiently shaping the response characteristics of a fixed dynamical system by forcing with a designed input. We obtain improved inputs by using an evolutionary algorithm to search a space of possible waveforms generated by a set of nonlinear, ordinary differenti...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2011-06, Vol.21 (2), p.023136-023136-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work describes an approach for efficiently shaping the response characteristics of a fixed dynamical system by forcing with a designed input. We obtain improved inputs by using an evolutionary algorithm to search a space of possible waveforms generated by a set of nonlinear, ordinary differential equations (ODEs). Good solutions are those that result in a desired system response subject to some input efficiency constraint, such as signal power. In particular, we seek to find inputs that best disrupt a phase-locked loop (PLL). Three sets of nonlinear ODEs are investigated and found to have different disruption capabilities against a model PLL. These differences are explored and implications for their use as input signal models are discussed. The PLL was chosen here as an archetypal example but the approach has broad applicability to any input/output system for which a desired input cannot be obtained analytically. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.3597650 |