Unraveling the role of myosin in forming autophagosomes

Macroautophagy (hereafter autophagy) is a membrane-mediated catabolic process that occurs in response to a variety of intra- and extra-cellular stresses. It is characterized by the formation of specialized double-membrane vesicles, autophagosomes, which engulf organelles and long-lived proteins, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2011-07, Vol.7 (7), p.778-779
Hauptverfasser: Tang, Hong-Wen, Chen, Guang-Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macroautophagy (hereafter autophagy) is a membrane-mediated catabolic process that occurs in response to a variety of intra- and extra-cellular stresses. It is characterized by the formation of specialized double-membrane vesicles, autophagosomes, which engulf organelles and long-lived proteins, and in turn fuse with lysosomes for degradation and recycling. How autophagosomes emerge is still unclear. The Atg1 kinase plays a crucial role in the induction of autophagosome formation. While several Atg (autophagy-related) proteins have been associated with, and have been found to regulate, Atg1 kinase activity, the downstream targets of Atg1 that trigger autophagy remain unknown. Our recent studies have identified a myosin light chain kinase (MLCK)-like kinase as the Atg1 kinase effector that induces the activation of myosin II, and have found it to be required for autophagosome formation during nutrient deprivation. We further demonstrated that Atg1-mediated myosin II activation is crucial for the movement of the Atg9 transmembrane protein between the Golgi and the forming autophagosome, which provides a membrane source for the formation of autophagosomes during starvation.
ISSN:1554-8627
1554-8635
DOI:10.4161/auto.7.7.15537