Comparison of Texture Analysis Schemes Under Nonideal Conditions

Several recent advancements in the field of texture analysis prompt some fundamental questions. For instance, what is the true impact of these novel advancements under real-world environments? When do these novel advancements fail to perform? Which methods perform better and under what conditions? I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2011-08, Vol.20 (8), p.2260-2275
Hauptverfasser: Kandaswamy, U., Schuckers, S. A., Adjeroh, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several recent advancements in the field of texture analysis prompt some fundamental questions. For instance, what is the true impact of these novel advancements under real-world environments? When do these novel advancements fail to perform? Which methods perform better and under what conditions? In this work, we investigate these and other issues under nonideal image acquisition environments, specifically, environments with changing conditions due to illumination variations and those caused by both affine and nonaffine transformations. We study the performance of nine popular texture analysis algorithms using three different datasets, with varying levels of difficulty. Experiments are performed on nonideal texture datasets under five different setups. We find that most state-of-the-art techniques do not perform well under these conditions. To a large extent, their performance under nonideal conditions depends critically on the nature of the textural surface. Moreover, most techniques fail to perform reliably when the number of classes in the dataset is increased significantly, over the regular-size datasets used in previous work. Multiscale features performed reasonably well against variations caused by illumination and rotation but are prone to fail under changes in scale. Surprisingly, the performance for most of the algorithms is generally stable on structured or periodic textures, even with variations in illumination or affine transformations.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2010.2101612