Molecular Genetics of Herpes Simplex Virus: Demonstration of Regions of Obligatory and Nonobligatory Identity within Diploid Regions of the Genome by Sequence Replacement and Insertion
The DNAs of herpes simplex virus (HSV) 1 and 2 consist of two components, L and S, each composed of unique sequences bracketed by inverted repeats. In this study we have probed the structure of the reiterated regions of the S component in marker rescue experiments involving transfection of cells wit...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1978-08, Vol.75 (8), p.3896-3900 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The DNAs of herpes simplex virus (HSV) 1 and 2 consist of two components, L and S, each composed of unique sequences bracketed by inverted repeats. In this study we have probed the structure of the reiterated regions of the S component in marker rescue experiments involving transfection of cells with mixtures of intact HSV-1 mutant viral DNA and individual DNA fragments generated by restriction endonuclease digestion of wild-type HSV-1 or HSV-2 DNAs. The results were as follows: (i) HSV is diploid for the wild-type sequences that rescue two temperature-sensitive (ts) mutants. DNA fragments from both reiterated regions of the S component of HSV-1(F) DNA can rescue tsLB2 and tsD mutants. (ii) Identity of the entire reiterated sequence at both ends of S is not obligatory because only one end of the S component of wild phenotype virus HSV-1(1061) rescues tsD even though both ends rescue tsLB2. (iii) Genes in both reiterated sequences can be expressed. We produced, by marker rescue experiments, recombinants with heterotypic ends of the S component, and these specified corresponding polypeptides characteristic of both HSV-1 and HSV-2. (iv) The reiterated sequences of the S component may contain a region of obligatory identity. Thus, several recombinant clones produced by rescue with HSV-2 DNA contained identical HSV-2 DNA insertions within both reiterated regions of the HSV-1 S component. Consistent with this conclusion, the termini of the S component in the heterodiploids described in iii were identical by restriction enzyme analysis. (v) The observation that HSV DNA can be expanded by at least 5 × 106by means of insertion in the S component suggests that it can be a vehicle for exogenous DNA. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.75.8.3896 |