Calcineurin increases glucose activation of ERK1/2 by reversing negative feedback
In pancreatic β cells, ERK1 and ERK2 participate in nutrient sensing, and their activities rise and fall as a function of glucose concentration over the physiologic range. Glucose metabolism triggers calcium influx and release of calcium from intracellular stores to activate ERK1/2. Calcium influx a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-12, Vol.107 (51), p.22314-22319 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In pancreatic β cells, ERK1 and ERK2 participate in nutrient sensing, and their activities rise and fall as a function of glucose concentration over the physiologic range. Glucose metabolism triggers calcium influx and release of calcium from intracellular stores to activate ERK1/2. Calcium influx also activates the calcium-dependent phosphatase calcineurin, which is required for maximal ERK1/2 activation by glucose. Calcineurin controls insulin gene expression by ERK1/2-dependent and -independent mechanisms. Here, we show that, in β cells, glucose activates the ERK1/2 cascade primarily through B-Raf. Glucose activation of B-Raf, like that of ERK1/2, is calcineurin-sensitive. Calcineurin binds to B-Raf in both unstimulated and stimulated cells. We show that B-Raf is a calcineurin substrate; among calcineurin target residues on B-Raf is T401, a site of negative feedback phosphorylation by ERK1/2. Blocking calcineurin activity in β cells prevents dephosphorylation of B-Raf T401 and decreases B-Raf and ERK1/2 activities. We conclude that the major calcineurin-dependent event in glucose sensing by ERK1/2 is the activation of B-Raf. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1016630108 |