Quantitative accuracy of the closed-form least-squares solution for targeted SPECT

The aim of this study is to investigate the quantitative accuracy of the closed-form least-squares solution (LSS) for single photon emission computed tomography (SPECT). The main limitation for employing this method in actual clinical reconstructions is the computational cost related to operations w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2010-10, Vol.55 (19), p.5667-5683, Article 5667
Hauptverfasser: Shcherbinin, S, Celler, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study is to investigate the quantitative accuracy of the closed-form least-squares solution (LSS) for single photon emission computed tomography (SPECT). The main limitation for employing this method in actual clinical reconstructions is the computational cost related to operations with a large-sized system matrix. However, in some clinical situations, the size of the system matrix can be decreased using targeted reconstruction. For example, some oncology SPECT studies are characterized by intense tracer uptakes that are localized in relatively small areas, while the remaining parts of the patient body have only a low activity background. Conventional procedures reconstruct the activity distribution in the whole object, which leads to relatively poor image accuracy/resolution for tumors while computer resources are wasted, trying to rebuild diagnostically useless background. In this study, we apply a concept of targeted reconstruction to SPECT phantom experiments imitating such oncology scans. Our approach includes two major components: (i) disconnection of the entire imaging system of equations and extraction of only those parts that correspond to the targets, i.e., regions of interest (ROI) encompassing active containers/tumors and (ii) generation of the closed-form LSS for each target ROI. We compared these ROI-based LSS with those reconstructed by the conventional MLEM approach. The analysis of the five processed cases from two phantom experiments demonstrated that the LSS approach outperformed MLEM in terms of the noise level inside ROI. On the other hand, MLEM better recovered total activity if the number of iterations was large enough. For the experiment without background activity, the ROI-based LSS led to noticeably better spatial activity distribution inside ROI. However, the distributions pertaining to both approaches were practically identical for the experiment with the concentration ratio 7:1 between the containers and the background.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/55/19/004