Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion

We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In additio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2010-10, Vol.12 (39), p.1278-12793
Hauptverfasser: Bedeaux, D, Pagonabarraga, I, Ortiz de Zárate, J. M, Sengers, J. V, Kjelstrup, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12793
container_issue 39
container_start_page 1278
container_title Physical chemistry chemical physics : PCCP
container_volume 12
creator Bedeaux, D
Pagonabarraga, I
Ortiz de Zárate, J. M
Sengers, J. V
Kjelstrup, S
description We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics. The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.
doi_str_mv 10.1039/c0cp00289e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20820557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>756823926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_Agiq3Vi3elHkQQViePfR2l-IKqFz0v6STByO5mTXYP_fbGtrY3TzPM_DKBPyGnFG4o8PIWATsAVpR6j4ypyHhSQiH2t32ejchRCF8AQFPKD8mIQcEgTfMxeX3RwQV0ncVp69pEfw-2tgtvh2baf2rfOLVsZWMxTJ1ZCRvcaiHrqdcSextnyhozhNgdkwMj66BPNnVCPh7u32dPyfzt8Xl2N0-QZ6JPjFIFSKRIQaCgAhnnwASiApEyLYymEhgtEUWZy1ywXFMhM8WRxadU8wm5Wt_tvPsedOirxgbUdS1b7YZQ5WlWMF6yLMrrtUTvQvDaVJ23jfTLikL1G1-1iy_i883ZYdFotaV_eUVwuQEyoKyNly3asHOcpxlPi-gu1s4H3G53H1WdMtGc_Wf4DyI-jn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756823926</pqid></control><display><type>article</type><title>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bedeaux, D ; Pagonabarraga, I ; Ortiz de Zárate, J. M ; Sengers, J. V ; Kjelstrup, S</creator><creatorcontrib>Bedeaux, D ; Pagonabarraga, I ; Ortiz de Zárate, J. M ; Sengers, J. V ; Kjelstrup, S</creatorcontrib><description>We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics. The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c0cp00289e</identifier><identifier>PMID: 20820557</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Diffusion ; Exact sciences and technology ; General and physical chemistry ; Hydrodynamics ; Models, Chemical ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2010-10, Vol.12 (39), p.1278-12793</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</citedby><cites>FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23356358$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20820557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bedeaux, D</creatorcontrib><creatorcontrib>Pagonabarraga, I</creatorcontrib><creatorcontrib>Ortiz de Zárate, J. M</creatorcontrib><creatorcontrib>Sengers, J. V</creatorcontrib><creatorcontrib>Kjelstrup, S</creatorcontrib><title>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics. The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.</description><subject>Chemistry</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrodynamics</subject><subject>Models, Chemical</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtLAzEQB_Agiq3Vi3elHkQQViePfR2l-IKqFz0v6STByO5mTXYP_fbGtrY3TzPM_DKBPyGnFG4o8PIWATsAVpR6j4ypyHhSQiH2t32ejchRCF8AQFPKD8mIQcEgTfMxeX3RwQV0ncVp69pEfw-2tgtvh2baf2rfOLVsZWMxTJ1ZCRvcaiHrqdcSextnyhozhNgdkwMj66BPNnVCPh7u32dPyfzt8Xl2N0-QZ6JPjFIFSKRIQaCgAhnnwASiApEyLYymEhgtEUWZy1ywXFMhM8WRxadU8wm5Wt_tvPsedOirxgbUdS1b7YZQ5WlWMF6yLMrrtUTvQvDaVJ23jfTLikL1G1-1iy_i883ZYdFotaV_eUVwuQEyoKyNly3asHOcpxlPi-gu1s4H3G53H1WdMtGc_Wf4DyI-jn0</recordid><startdate>20101021</startdate><enddate>20101021</enddate><creator>Bedeaux, D</creator><creator>Pagonabarraga, I</creator><creator>Ortiz de Zárate, J. M</creator><creator>Sengers, J. V</creator><creator>Kjelstrup, S</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101021</creationdate><title>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</title><author>Bedeaux, D ; Pagonabarraga, I ; Ortiz de Zárate, J. M ; Sengers, J. V ; Kjelstrup, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrodynamics</topic><topic>Models, Chemical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedeaux, D</creatorcontrib><creatorcontrib>Pagonabarraga, I</creatorcontrib><creatorcontrib>Ortiz de Zárate, J. M</creatorcontrib><creatorcontrib>Sengers, J. V</creatorcontrib><creatorcontrib>Kjelstrup, S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedeaux, D</au><au>Pagonabarraga, I</au><au>Ortiz de Zárate, J. M</au><au>Sengers, J. V</au><au>Kjelstrup, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2010-10-21</date><risdate>2010</risdate><volume>12</volume><issue>39</issue><spage>1278</spage><epage>12793</epage><pages>1278-12793</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics. The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>20820557</pmid><doi>10.1039/c0cp00289e</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2010-10, Vol.12 (39), p.1278-12793
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_20820557
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Diffusion
Exact sciences and technology
General and physical chemistry
Hydrodynamics
Models, Chemical
Thermodynamics
title Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20non-equilibrium%20thermodynamics%20of%20non-isothermal%20reaction-diffusion&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Bedeaux,%20D&rft.date=2010-10-21&rft.volume=12&rft.issue=39&rft.spage=1278&rft.epage=12793&rft.pages=1278-12793&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c0cp00289e&rft_dat=%3Cproquest_pubme%3E756823926%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756823926&rft_id=info:pmid/20820557&rfr_iscdi=true