Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion
We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In additio...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2010-10, Vol.12 (39), p.1278-12793 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12793 |
---|---|
container_issue | 39 |
container_start_page | 1278 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 12 |
creator | Bedeaux, D Pagonabarraga, I Ortiz de Zárate, J. M Sengers, J. V Kjelstrup, S |
description | We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics.
The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients. |
doi_str_mv | 10.1039/c0cp00289e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_20820557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>756823926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</originalsourceid><addsrcrecordid>eNp90EtLAzEQB_Agiq3Vi3elHkQQViePfR2l-IKqFz0v6STByO5mTXYP_fbGtrY3TzPM_DKBPyGnFG4o8PIWATsAVpR6j4ypyHhSQiH2t32ejchRCF8AQFPKD8mIQcEgTfMxeX3RwQV0ncVp69pEfw-2tgtvh2baf2rfOLVsZWMxTJ1ZCRvcaiHrqdcSextnyhozhNgdkwMj66BPNnVCPh7u32dPyfzt8Xl2N0-QZ6JPjFIFSKRIQaCgAhnnwASiApEyLYymEhgtEUWZy1ywXFMhM8WRxadU8wm5Wt_tvPsedOirxgbUdS1b7YZQ5WlWMF6yLMrrtUTvQvDaVJ23jfTLikL1G1-1iy_i883ZYdFotaV_eUVwuQEyoKyNly3asHOcpxlPi-gu1s4H3G53H1WdMtGc_Wf4DyI-jn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>756823926</pqid></control><display><type>article</type><title>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bedeaux, D ; Pagonabarraga, I ; Ortiz de Zárate, J. M ; Sengers, J. V ; Kjelstrup, S</creator><creatorcontrib>Bedeaux, D ; Pagonabarraga, I ; Ortiz de Zárate, J. M ; Sengers, J. V ; Kjelstrup, S</creatorcontrib><description>We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics.
The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c0cp00289e</identifier><identifier>PMID: 20820557</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Diffusion ; Exact sciences and technology ; General and physical chemistry ; Hydrodynamics ; Models, Chemical ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2010-10, Vol.12 (39), p.1278-12793</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</citedby><cites>FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23356358$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20820557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bedeaux, D</creatorcontrib><creatorcontrib>Pagonabarraga, I</creatorcontrib><creatorcontrib>Ortiz de Zárate, J. M</creatorcontrib><creatorcontrib>Sengers, J. V</creatorcontrib><creatorcontrib>Kjelstrup, S</creatorcontrib><title>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics.
The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.</description><subject>Chemistry</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrodynamics</subject><subject>Models, Chemical</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtLAzEQB_Agiq3Vi3elHkQQViePfR2l-IKqFz0v6STByO5mTXYP_fbGtrY3TzPM_DKBPyGnFG4o8PIWATsAVpR6j4ypyHhSQiH2t32ejchRCF8AQFPKD8mIQcEgTfMxeX3RwQV0ncVp69pEfw-2tgtvh2baf2rfOLVsZWMxTJ1ZCRvcaiHrqdcSextnyhozhNgdkwMj66BPNnVCPh7u32dPyfzt8Xl2N0-QZ6JPjFIFSKRIQaCgAhnnwASiApEyLYymEhgtEUWZy1ywXFMhM8WRxadU8wm5Wt_tvPsedOirxgbUdS1b7YZQ5WlWMF6yLMrrtUTvQvDaVJ23jfTLikL1G1-1iy_i883ZYdFotaV_eUVwuQEyoKyNly3asHOcpxlPi-gu1s4H3G53H1WdMtGc_Wf4DyI-jn0</recordid><startdate>20101021</startdate><enddate>20101021</enddate><creator>Bedeaux, D</creator><creator>Pagonabarraga, I</creator><creator>Ortiz de Zárate, J. M</creator><creator>Sengers, J. V</creator><creator>Kjelstrup, S</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101021</creationdate><title>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</title><author>Bedeaux, D ; Pagonabarraga, I ; Ortiz de Zárate, J. M ; Sengers, J. V ; Kjelstrup, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-fdd80ac1c104c414c233024ccd0452e4fe1a0219cc497a7427e14a6d3c2fdd1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrodynamics</topic><topic>Models, Chemical</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedeaux, D</creatorcontrib><creatorcontrib>Pagonabarraga, I</creatorcontrib><creatorcontrib>Ortiz de Zárate, J. M</creatorcontrib><creatorcontrib>Sengers, J. V</creatorcontrib><creatorcontrib>Kjelstrup, S</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedeaux, D</au><au>Pagonabarraga, I</au><au>Ortiz de Zárate, J. M</au><au>Sengers, J. V</au><au>Kjelstrup, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2010-10-21</date><risdate>2010</risdate><volume>12</volume><issue>39</issue><spage>1278</spage><epage>12793</epage><pages>1278-12793</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics.
The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>20820557</pmid><doi>10.1039/c0cp00289e</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2010-10, Vol.12 (39), p.1278-12793 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_20820557 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemistry Diffusion Exact sciences and technology General and physical chemistry Hydrodynamics Models, Chemical Thermodynamics |
title | Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20non-equilibrium%20thermodynamics%20of%20non-isothermal%20reaction-diffusion&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Bedeaux,%20D&rft.date=2010-10-21&rft.volume=12&rft.issue=39&rft.spage=1278&rft.epage=12793&rft.pages=1278-12793&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c0cp00289e&rft_dat=%3Cproquest_pubme%3E756823926%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=756823926&rft_id=info:pmid/20820557&rfr_iscdi=true |