Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion

We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In additio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2010-10, Vol.12 (39), p.1278-12793
Hauptverfasser: Bedeaux, D, Pagonabarraga, I, Ortiz de Zárate, J. M, Sengers, J. V, Kjelstrup, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics. The fluctuation-dissipation theorem and the law of mass action are derived for a reaction in temperature-, chemical potential- and velocity gradients.
ISSN:1463-9076
1463-9084
DOI:10.1039/c0cp00289e