Differential capacitance of the double layer at the electrode/ionic liquids interface

The differential capacitance of the electrical double layer at glassy carbon, platinum and gold electrodes immersed in various ionic liquids was measured using impedance spectroscopy. We discuss the influence of temperature, the composition of the ionic liquids and the electrode material on the diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2010-10, Vol.12 (39), p.12499-12512
Hauptverfasser: Lockett, Vera, Horne, Mike, Sedev, Rossen, Rodopoulos, Theo, Ralston, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The differential capacitance of the electrical double layer at glassy carbon, platinum and gold electrodes immersed in various ionic liquids was measured using impedance spectroscopy. We discuss the influence of temperature, the composition of the ionic liquids and the electrode material on the differential capacitance/potential curves. For different systems these curves have various overall shapes, but all include several extremes and a common minimum near the open circuit potential. We attribute this minimum to the potential of zero charge (PZC). Significantly, the differential capacitance generally decreases if the applied potential is large and moving away from the PZC. This is attributed to lattice saturation [A. A. Kornyshev, J. Phys. Chem. B , 2007, 111 , 5545] effects which result in a thicker double layer. The differential capacitance of the double layer grows and specific adsorption diminishes with increasing temperature. Specific adsorption of both cations and anions influences the shapes of curves close to the PZC. The general shape of differential capacitance/potential does not depend strongly on the identity of the electrode material. The electrical double layer in ionic liquids is different to that in aqueous electrolyte solutions and the differential capacitances curves in ionic liquids are generally "camel"-shaped on different electrode materials. Curves for glassy carbon and gold in [C 4 mim][Tf 2 N] are shown.
ISSN:1463-9076
1463-9084
DOI:10.1039/c0cp00170h