Flexibility of ideal zeolite frameworks

We explore the flexibility windows of the 194 presently-known zeolite frameworks. The flexibility window represents a range of densities within which an ideal zeolite framework is stress-free. Here, we consider the ideal zeolite to be an assembly of rigid corner-sharing perfect tetrahedra. The corne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2010-01, Vol.12 (3), p.8531-8541
Hauptverfasser: Kapko, V, Dawson, C, Treacy, M. M. J, Thorpe, M. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the flexibility windows of the 194 presently-known zeolite frameworks. The flexibility window represents a range of densities within which an ideal zeolite framework is stress-free. Here, we consider the ideal zeolite to be an assembly of rigid corner-sharing perfect tetrahedra. The corner linkages between tetrahedra are hard-sphere oxygen atoms, which are presumed to act as freely-rotating, force-free, spherical joints. All other inter-tetrahedral forces, such as coulomb interactions, are ignored. Thus, the flexibility window represents the null-space of the kinematic matrix that governs the allowable internal motions of the ideal zeolite framework. We show that almost all of the known aluminosilicate or aluminophosphate zeolites exhibit a flexibility window. Consequently, the presence of flexibility in a hypothetical framework topology promises to be a valuable indicator of synthetic feasibility. We describe computational methods for exploring the flexibility window, and discuss some of the exceptions to this flexibility rule. We explore the flexibility windows of the 194 presently-known zeolite frameworks.
ISSN:1463-9076
1463-9084
DOI:10.1039/c003977b