Action and Gait Recognition From Recovered 3-D Human Joints

A common viewpoint-free framework that fuses pose recovery and classification for action and gait recognition is presented in this paper. First, a markerless pose recovery method is adopted to automatically capture the 3-D human joint and pose parameter sequences from volume data. Second, multiple c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2010-08, Vol.40 (4), p.1021-1033
Hauptverfasser: Gu, Junxia, Ding, Xiaoqing, Wang, Shengjin, Wu, Youshou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A common viewpoint-free framework that fuses pose recovery and classification for action and gait recognition is presented in this paper. First, a markerless pose recovery method is adopted to automatically capture the 3-D human joint and pose parameter sequences from volume data. Second, multiple configuration features (combination of joints) and movement features (position, orientation, and height of the body) are extracted from the recovered 3-D human joint and pose parameter sequences. A hidden Markov model (HMM) and an exemplar-based HMM are then used to model the movement features and configuration features, respectively. Finally, actions are classified by a hierarchical classifier that fuses the movement features and the configuration features, and persons are recognized from their gait sequences with the configuration features. The effectiveness of the proposed approach is demonstrated with experiments on the Institut National de Recherche en Informatique et Automatique Xmas Motion Acquisition Sequences data set.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2010.2043526