Low-reflective wire-grid polarizers with absorptive interference overlayers

Wire-grid (WG) polarizers with low reflectivity for visible light have been successfully developed. We theoretically consider the optical properties of simple sandwich structures of absorptive layer/transparent layer (gap layer)/high-reflective mirrors and found that it is possible to develop an ant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2010-04, Vol.21 (17), p.175604
Hauptverfasser: Suzuki, Motofumi, Takada, Akio, Yamada, Takatoshi, Hayasaka, Takashi, Sasaki, Kouji, Takahashi, Eiji, Kumagai, Seiji
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wire-grid (WG) polarizers with low reflectivity for visible light have been successfully developed. We theoretically consider the optical properties of simple sandwich structures of absorptive layer/transparent layer (gap layer)/high-reflective mirrors and found that it is possible to develop an antireflection (AR) coating owing to the interference along with the absorption in the absorptive layer. A wide variety of materials can be used for AR coatings by tuning the thicknesses of both the absorptive and the gap layers. This AR concept has been applied to reduce the reflectance of WG polarizers of Al. FeSi(2) as an absorptive layer has been deposited by the glancing angle deposition technique immediately on the top of Al wires covered with a thin SiO(2) layer as a gap layer. For the optimum combination of the thicknesses of FeSi(2) and SiO(2), the reflectance becomes lower than a few per cent, independent of the polarization, whereas the transmission polarization properties remain good. Because low-reflective (LR) WG polarizers are completely composed of inorganic materials, they are useful for applications requiring high-temperature durability such as liquid crystal projection displays.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/21/17/175604