Cooperation of tumor-derived HBx mutants and p53-249(ser) mutant in regulating cell proliferation, anchorage-independent growth and aneuploidy in a telomerase-immortalized normal human hepatocyte-derived cell line

Hepatocellular carcinoma (HCC) is a common cancer, and hepatitis B virus (HBV) is a major etiological agent. Convincing epidemiological and experimental evidence also links HCC to aflatoxin, a naturally occurring mycotoxin that produces a signature p53-249(ser) mutation. Recently, we have reported t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2010-09, Vol.127 (5), p.1011
Hauptverfasser: Jiang, Weidong, Wang, Xin Wei, Unger, Tamar, Forgues, Marshonna, Kim, Jin Woo, Hussain, S Perwez, Bowman, Elise, Spillare, Elisa A, Lipsky, Michael M, Meck, Jeanne M, Cavalli, Luciane R, Haddad, Bassem R, Harris, Curtis C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatocellular carcinoma (HCC) is a common cancer, and hepatitis B virus (HBV) is a major etiological agent. Convincing epidemiological and experimental evidence also links HCC to aflatoxin, a naturally occurring mycotoxin that produces a signature p53-249(ser) mutation. Recently, we have reported that tumor-derived HBx variants encoded by HBV exhibited attenuated transactivation and proapoptotic functions but retained their ability to block p53-mediated apoptosis. These results indicate that mutations in HBx may contribute to the development of HCC. In this study, we determined whether tumor-derived HBx mutants along, or in cooperation with p53-249(ser), could alter cell proliferation and chromosome stability of normal human hepatocytes. To test this hypothesis, we established a telomerase immortalized normal human hepatocycte line HHT4 that exhibited a near diploid karyotype and expressed many hepatocyte-specific genes. We found that overexpression one of the tumor-derived HBx mutants, CT, significantly increased colony forming efficiency (CFE) while its corresponding wild-type allele CNT significantly decreased CFE in HHT4 cells. p53-249(ser) rescued CNT-mediated inhibition of colony formation. Although HHT4 cells lacked an anchorage independent growth capability as they did not form any colonies in soft agar, the CT-expressing HHT4 cells could form colonies, which could be significantly enhanced by p53-249(ser). Induction of aneuploidy could be observed in HHT4 cells expressing CT, but additionally recurring chromosome abnormalities could only be detected in cells coexpressing CT and p53-249(ser). Our results are consistent with the hypothesis that certain mutations in HBx and p53 at codon 249 may cooperate in contributing to liver carcinogenesis.
ISSN:1097-0215
DOI:10.1002/ijc.25118