Bulk shear wave propagation in an epoxy: attenuation and phase velocity over five decades of frequency
Proportionality between the ultrasonic wave attenuation coefficient in epoxies and other polymers and frequency is a commonly observed but little understood phenomenon. How it is ultimately explained will depend on the breadth of the frequency range over which it is significant. This paper presents...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2009-11, Vol.56 (11), p.2504-2513 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proportionality between the ultrasonic wave attenuation coefficient in epoxies and other polymers and frequency is a commonly observed but little understood phenomenon. How it is ultimately explained will depend on the breadth of the frequency range over which it is significant. This paper presents results of experiments to measure loss in a single epoxy material over 5 decades of frequency using 4 complementary techniques - dynamic mechanical analysis, microwave excited low-frequency resonances, a novel guidedwave technique based on a metal-epoxy-metal sandwich, and a conventional pulse mode ultrasonic spectrometer. The results are confined to bulk shear waves in the epoxy. They confirm the linear relationship between attenuation and frequency, and it is shown that the broadband behavior of the attenuation and shear wave phase velocity is consistent with the Kramers- Kronig relationships. |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2009.1337 |