A Multilayer MEMS Platform for Single-Cell Electric Impedance Spectroscopy and Electrochemical Analysis

The fabrication and characterization of a micro- chamber electrode array for electrical and electrochemical studies of individual biological cells are presented. The geometry was tailored specifically for measurements from sensory hair cells isolated from the cochlea of the mammalian inner ear. Conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2008-08, Vol.17 (4), p.850-862
Hauptverfasser: Dittami, Gregory M., Ayliffe, H. Edward, King, Curtis S., Rabbitt, Richard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fabrication and characterization of a micro- chamber electrode array for electrical and electrochemical studies of individual biological cells are presented. The geometry was tailored specifically for measurements from sensory hair cells isolated from the cochlea of the mammalian inner ear. Conventional micro- electromechanical system (MEMS) fabrication techniques were combined with a heat-sealing technique and polydimethylsiloxane micromolding to achieve a multilayered microfluidic system that facilitates cell manipulation and selection. The system allowed for electrical stimulation of individual living cells and interrogation of excitable cell membrane dielectric properties as a function of space and time. A three-electrode impedimetric system was incorporated to provide the additional ability to record the time-dependent concentrations of specific biochemicals in microdomain volumes near identified regions of the cell membrane. The design and fabrication of a robust fluidic and electrical interface are also described. The interface provided the flexibility and simplicity of a "cartridge- based" approach in connecting to the MEMS devices. Cytometric measurement capabilities were characterized by using electric impedance spectroscopy (1 kHz-10 MHz) of isolated outer hair cells. Chemical sensing capability within the microchannel recording chamber was characterized by using cyclic voltammetry with varying concentrations of potassium ferricyanide (K 3 Fe(CN)6). Chronoamperometric recordings of electrically stimulated PC12 cells highlight the ability of the platform to resolve exocytosis events from individual cells.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2008.921726