Control of a brain–computer interface without spike sorting
Two rhesus monkeys were trained to move a cursor using neural activity recorded with silicon arrays of 96 microelectrodes implanted in the primary motor cortex. We have developed a method to extract movement information from the recorded single and multi-unit activity in the absence of spike sorting...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2009-10, Vol.6 (5), p.055004-055004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two rhesus monkeys were trained to move a cursor using neural activity recorded with silicon arrays of 96 microelectrodes implanted in the primary motor cortex. We have developed a method to extract movement information from the recorded single and multi-unit activity in the absence of spike sorting. By setting a single threshold across all channels and fitting the resultant events with a spline tuning function, a control signal was extracted from this population using a Bayesian particle-filter extraction algorithm. The animals achieved high-quality control comparable to the performance of decoding schemes based on sorted spikes. Our results suggest that even the simplest signal processing is sufficient for high-quality neuroprosthetic control. |
---|---|
ISSN: | 1741-2552 1741-2560 1741-2552 |
DOI: | 10.1088/1741-2560/6/5/055004 |