Advances in Radioprotection through the Use of Combined Agent Regimens
Summary The most effective radioprotective agents exhibit toxicities that can limit their usefulness. It may be possible to use combinations of agents with different radioprotective mechanisms of action at less toxic doses, or to reduce the toxicity of the major protective compound by adding another...
Gespeichert in:
Veröffentlicht in: | International journal of radiation biology 1990, Vol.57 (4), p.709-722 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
The most effective radioprotective agents exhibit toxicities that can limit their usefulness. It may be possible to use combinations of agents with different radioprotective mechanisms of action at less toxic doses, or to reduce the toxicity of the major protective compound by adding another agent. With regard to the latter possibility, improved radioprotection and reduced lethal toxicity of the phosphorothioate WR-2721 was observed when it was administered in combination with metals (selenium, zinc or copper). The known mechanisms of action of potential radioprotective agents and varying effects of different doses and times of administration in relation to radiation exposure must be considered when using combined-agent regimens. A number of receptor-mediated protectors and other biological compounds, including endotoxin, eicosanoids and cytokines, have at least an additive effect when administered with thiol protectors. Eicosanoids and other bioactive lipids must be administered before radiation exposure, whereas some immunomodulators have activity when administered either before or after radiation exposure. For example, the cytokine interleukin-1 administered simultaneously with WR-2721 before irradiation or after irradiation enhances the radioprotective efficacy of WR-2721. The most effective single agents or combinations of protectors result in a decrement in locomotor activity, an index of behavioral toxicity. Recent evidence indicates that administration of the CNS stimulant caffeine mitigates the behavioral toxicity of an effective radioprotective dose of the phosphorothioate WR-3689 without altering its radioprotective efficacy. These examples indicate that the use of combinations of agents is a promising approach for maximizing radioprotection with minimal adverse effects. |
---|---|
ISSN: | 0955-3002 1362-3095 |
DOI: | 10.1080/09553009014550881 |