Influence of 70 nm silica particles in mice with cisplatin or paraquat-induced toxicity
In the pharmaceutical industry, nano-size materials are designed as drug carriers and diagnosis probes. Interactions between nano-size materials and chemicals need investigating. Here, we investigated whether nano-size materials affect chemical-induced toxicity using silica particles, which have bee...
Gespeichert in:
Veröffentlicht in: | Pharmazie 2009-06, Vol.64 (6), p.395-397 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the pharmaceutical industry, nano-size materials are designed as drug carriers and diagnosis probes. Interactions between nano-size materials and chemicals need investigating. Here, we investigated whether nano-size materials affect chemical-induced toxicity using silica particles,
which have been widely used in cosmetics and drug delivery and have diameters of 70 (SP70), 300 (SP300) and 1000 (SP1000) nm, a popular anti-tumor agent, cisplatin, and a widely used herbicide, paraquat. Mice were treated with either cisplatin (100 μmol/kg, intraperitoneally) or paraquat
(50 mg/kg, intraperitoneally), with or without intravenous silica particle administration. All treatments were non-lethal and did not show severe toxicity, except for injection with both cisplatin and SP70, which were lethal. When mice received with paraquat and/or the silica particles, synergistic
enhanced toxicity was observed in both paraquat- and SP70-treated mice. These synergic effects were not observed with either Si300 or 1000 treatment. Our findings suggest that further evaluation on the interaction between nano-size materials and chemicals is critical for the pharmaceutical
application of nanotechnology. |
---|---|
ISSN: | 0031-7144 |
DOI: | 10.1691/ph.2009.9048 |