Brain organization mirrors caste differences, colony founding and nest architecture in paper wasps (Hymenoptera: Vespidae)

The cognitive challenges that social animals face depend on species differences in social organization and may affect mosaic brain evolution. We asked whether the relative size of functionally distinct brain regions corresponds to species differences in social behaviour among paper wasps (Hymenopter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2009-09, Vol.276 (1671), p.3345-3351
Hauptverfasser: Molina, Y, Harris, R M, O'Donnell, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cognitive challenges that social animals face depend on species differences in social organization and may affect mosaic brain evolution. We asked whether the relative size of functionally distinct brain regions corresponds to species differences in social behaviour among paper wasps (Hymenoptera: Vespidae). We measured the volumes of targeted brain regions in eight species of paper wasps. We found species variation in functionally distinct brain regions, which was especially strong in queens. Queens from species with open-comb nests had larger central processing regions dedicated to vision (mushroom body (MB) calyx collars) than those with enclosed nests. Queens from advanced eusocial species (swarm founders), who rely on pheromones in several contexts, had larger antennal lobes than primitively eusocial independent founders. Queens from species with morphologically distinct castes had augmented central processing regions dedicated to antennal input (MB lips) relative to caste monomorphic species. Intraspecific caste differences also varied with mode of colony founding. Independent-founding queens had larger MB collars than their workers. Conversely, workers in swarm-founding species with decentralized colony regulation had larger MB calyx collars and optic lobes than their queens. Our results suggest that brain organization is affected by evolutionary transitions in social interactions and is related to the environmental stimuli group members face.
ISSN:0962-8452
1471-2954
1471-2945
DOI:10.1098/rspb.2009.0817