Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors
Adrenergic stimulation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon required activation of two beta-adrenergic receptor subtypes (beta-AdrR). Addition of epinephrine (epi) or norepinephrine (norepi) to the bathing solution of mucosae in Ussing chambers increased short...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: Gastrointestinal and liver physiology 2009-08, Vol.297 (2), p.G269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adrenergic stimulation of electrogenic K+ secretion in isolated mucosa from guinea pig distal colon required activation of two beta-adrenergic receptor subtypes (beta-AdrR). Addition of epinephrine (epi) or norepinephrine (norepi) to the bathing solution of mucosae in Ussing chambers increased short-circuit current (Isc) and transepithelial conductance (Gt), consistent with this cation secretion. A beta-adrenergic classification was supported by propranolol antagonism of this secretory response and the lack of effect by the alpha-AdrR antagonists BE2254 (alpha1-AdrR) and yohimbine (alpha2-AdrR). Subtype-selective antagonists CGP20712A (beta1-AdrR), ICI-118551 (beta2-AdrR), and SR59320A (beta3-AdrR) were relatively ineffective at inhibiting the epi-stimulated Isc response. In combination, CGP20712A and ICI-118551 inhibited the response, which supported a synergistic action by beta1-AdrR and beta2-AdrR. Expression of mRNA for both beta1-AdrR and beta2-AdrR was indicated by RT-PCR of RNA from colonic epithelial cells. Protein expression was indicated by immunoblot showing bands at molecular weights consistent with monomers and oligomers. Immunoreactivity (ir) for beta1-AdrR and beta2-AdrR was prominent in basolateral membranes of columnar epithelial cells in the crypts of Lieberkühn as well as intercrypt surface epithelium. Cells in the pericryptal sheath also had beta1-AdrR(ir) but did not have discernable beta2-AdrR(ir). The adrenergic sensitivity of K+ secretion measured by Isc and Gt was relatively low as indicated by EC(50)s of 41 +/- 7 nM for epi and 50 +/- 14 nM for norepi. Adrenergic activation of electrogenic K+ secretion required the involvement of both beta1-AdrR and beta2-AdrR, occurring with an agonist sensitivity reduced compared with reported values for either receptor subtype. |
---|---|
ISSN: | 1522-1547 |
DOI: | 10.1152/ajpgi.00076.2009 |