SLC39A9(ZIP9) regulates zinc homeostasis in the secretory pathway: Characterization of the ZIP subfamily I protein in vertebrate cells

The SLC39A family of zinc transporters can be divided into four subfamilies (I, II, LIV-1, and gufA) in vertebrates, but studies of their functions have been restricted exclusively to members of subfamilies II and LIV-1. In this study, we characterized SLC39A9 (ZIP9), the only member of subfamily I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2009-05, Vol.73 (5), p.1142-1148
Hauptverfasser: Matsuura, W.(Kyoto Univ. (Japan)), Yamazaki, T, Yamaguchi Iwai, Y, Masuda, S, Nagao, M, Andrews, G.K, Kambe, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The SLC39A family of zinc transporters can be divided into four subfamilies (I, II, LIV-1, and gufA) in vertebrates, but studies of their functions have been restricted exclusively to members of subfamilies II and LIV-1. In this study, we characterized SLC39A9 (ZIP9), the only member of subfamily I in vertebrates. Confocal microscopy demonstrated that transiently expressed, HA-tagged human ZIP9 (hZIP9-HA) was localized to the trans-Golgi network regardless of zinc status. Disruption of the ZIP9 gene in DT40 cells did not change the growth rate, sensitivity to high zinc and manganese concentrations during long-term culture, or cellular zinc status after short-term incubation with zinc. The alkaline phosphatase activity of ZIP9 −⁄− cells did not change in cells cultured in medium containing normal zinc levels. In contrast, the activity of this enzyme decreased in wild-type cells cultured in zinc deficient medium but less so in ZIP9 −⁄− cells under these conditions. Stable over-expression of hZIP9-HA moderately decreased alkaline phophatase activity. These results suggest that ZIP9 functions to regulate zinc homeostasis in the secretory pathway without significantly altering cytosolic zinc homeostasis.
ISSN:0916-8451
1347-6947
DOI:10.1271/bbb.80910